skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Zberecki, Krzysztof"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
  2. Abstract The transition metal selenides M1+ySe2(M = V, Ti) have intriguing quantum properties, which make them target materials for controlling properties by thinning them to the ultrathin limit. An appropriate approach for the synthesis of such ultrathin films is by molecular beam epitaxy. Here, it is shown that such synthesized V‐ and Ti‐Se2films can undergo a compositional change by vacuum annealing. Combined scanning tunneling and photoemission spectroscopy is used to determine compositional and structural changes of ultrathin films as a function of annealing temperature. Loss of selenium from the film is accompanied by a morphology change of monolayer height islands to predominantly bilayer height. In addition, crystal periodicity and atomic structure changes are observed. These changes are consistent with a transition from a layered transition metal dichalcogenide (TMDC) to ordered intercalation compounds with V or Ti intercalated in between two layers of their respective TMDCs. These observations may clear up misconception of the nature of previously reported high‐temperature grown transition metal selenides. More significantly, the demonstrated control of the formation of intercalation compounds is a key step toward modifying properties in van der Waals systems and toward expanding material systems for van der Waals heterostructures. 
    more » « less